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HYDROGEN PRODUCTION AND WASTE HEAT

» A renewable energy system require renewable hydrogen, e.g. in the chemical industry,
maritime and air transport, and steelmaking
»» Water electrolysis, solar PV and wind power are key factors in green hydrogen production

»» Mature electrolysis technologies (AWE, PEMWE) typically operate at 50-80% efficiency - how is the
cooling of electrolyzers managed, where is the waste heat directed?

»» Challenges in utilizing electrolysis-based waste heat:
»» Low temperature: 60—80°C - booster heat pump or electric boiler to increase the temperature
»» Variable heat source - heat storage to match heat demand

» Low full load hours (applies to all heat generation in Nordic conditions)

More on hydrogen economy: Breyer et al., 2024. The role of electricity-based hydrogen in the emerging power-to-X economy.
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INTRODUCTION TO RESEARCH RESULTS

»» Waste heat recovery from an off-grid AWE plant into a DH
network in Finland was studied

»» Optimal dimensioning of waste heat recovery system components to
minimize the levelized cost of heat supplied to the DHN

»» Utilization of measured data for electricity generation (solar PV and
wind), DH demand, and components dynamics

»» Waste heat generation is based on a previous study, in which the
dimensioning of the components and system control of the 100 MW AWE
plant were cost-optimized based on the levelized cost of hydrogen
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HEAT DEMAND AND GENERATION

»» Heat demand of a DH network in southeastern Finland in used (592 GWh/a)
»» Heat generation is based on the modeled 100 MW off-grid electrolyzer plant (97 GWh/a)
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WASTE HEAT RECOVERY SYSTEM

»» Waste heat recovery system include:
»» Pit thermal energy storage (PTES)
»» Heat pumps (2 pcs)
»» Electric boiler (possible additional source of heat)
»» In addition to waste heat, surplus electricity is generated that is not used for hydrogen production
»» Waste heat and surplus electricity are assumed to be cost-free
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DIFFERENT OPTIMIZATION SCENARIOS

»» Component dimensioning as well as the AWE plant scaling is cost-optimized in 4 scenarios:
» 1: Maximization of DH energy demand coverage rate without PTES and electric boiler
» 2: 50% DH energy demand coverage
» 3: 75% DH energy demand coverage
» 4:100% DH energy demand coverage

»» In addition, at least 95% of the generated waste heat must be recovered - AWE plant
scaling is minimized
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COST-OPTIMAL DIMENSIONING
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AWE PLANT SCALING
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LEVELIZED COST OF HEAT
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ANNUAL ELECTRICITY BALANCE
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SYSTEM OPERATION OVER A YEAR
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WASTE HEAT POTENTIAL OF THE WHOLE OF

FINLAND
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Sources: Fingrid & Gasgrid Finland, 2023. Energian siirtoverkot vetytalouden ja puhtaan energiajarjestelman mahdollistajina.
Energiateollisuus ry, 2023. Kaukolampdétilasto 2022.
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CONCLUSIONS

» Levelized cost of heat <45 €/ MWh can be reached in current DH networks

»» Heat pumps constitute the largest single cost (about 45-60%)

» Is it possible to eliminate heat pumps?
= Decrease in DH network temperature?

= |ncrease in waste heat temperature?

» PTES is a cost-effective seasonal heat storage (3—9 €/ MWh)

»» The Nordic countries (and other world) will bathe in waste heat if the estimated electrolyzer
capacity is realized with AWE/PEMWE

»» How hydrogen production facilities should be located to ensure maximum utilization of waste heat?
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