LUT University

LAND OFTEE CURIOUS

FUTURE ENERGY SOLUTIONS SEMINAR, LAPPEENRANTA

SMR TECHNOLOGIES

November 9, 2022

Juhani Hyvärinen Professor | LUT Nuclear Engineering juhani.hyvarinen@lut.fi

SMR POWER RANGES AND USE CASES

"SMR" is a broad notion; generally, < 1000 MWth; feasible for many applications

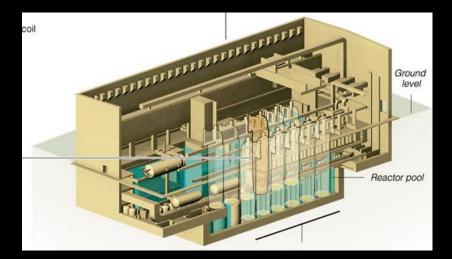
Use →	Electricity	Co-generation / Desalination	Naval	District heat / Desalination	Direct Hydrogen (non-LWR)
Thermal power (MW)	150010	1000100	200 100	10010	~500
Max temp (°C)	300	300	300	120	900
Units / installation	112	112	12	25	1few
Nature of application	Traditional	Heat & desalination new	Movement	New	New, material production
TRL	8	8	9	6	5

BASIC TECHNOLOGY FEATURES

>> Mostly UO₂ fuelled Light Water Reactors (LWRs), as the currently operating reactors

- Fuel consumed and wastes generated essentially similar to current commercial reactors
 - existing supply chains and services can be used
- Quantities are roughly proportional to reactor thermal powers
- >> Safety features emphasise inherent processes and "passive" systems
 - Little to no emergency power supply needed
 - Industrial-scale (small) emergency preparedness zones feasible
- * "Modular" design and construction, leverages economy of scale in large numbers of similar components and modules

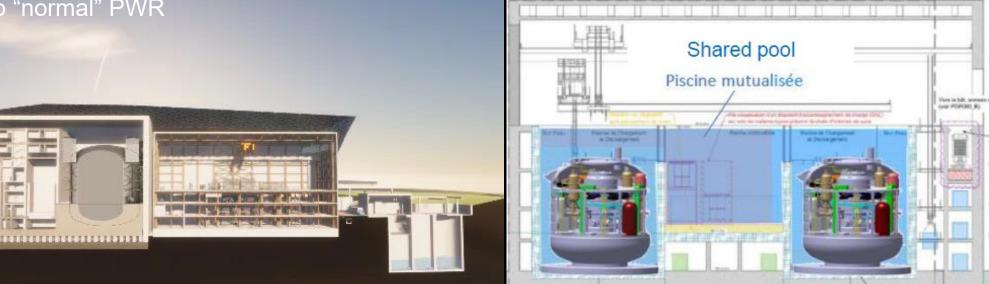
>> Designed primarily for electricity production; heat and desalination as by-products



COMMERCIAL SMRS – GENERIC POWER PLANTS

Cost target 2250 \$/kWe

NuScale VOYGR: 4..12 modules / plant 200 MWth / 77 MWe per module


Cost estimate 4200 \$/kWe

COMMERCIAL SMRS – GENERIC POWER PLANTS

Rolls Royce SMR

1400 MWth / 470 MWe Three loop "normal" PWR Nuward[™]: 2 Integral PWR modules / plant 500 MWth / 170 MWe per module

FINNISH DISTRICT HEATING REACTOR CONCEPTS

LUT HEating Reactor

ABOUT ALTERNATE REACTOR TECHNOLOGIES

- All imaginable variants of fission reactors have been already tried and proven in 1950-1980 timeframe
- >> Currently of renewed interest:
 - Gas-cooled graphite moderated designs \rightarrow high-temperature applications, up to 900 °C
 - Molten salt systems → temperatures around 600 °C, thermal breeding → thorium utilisation feasible
 - Lead-cooled systems \rightarrow temperatures up to 600 °C, fast breeding of plutonium
- Non-LWR designs tend to feature new fuel chemistries and relatively high U-235 enrichment, up to 20 %, the civilian maximum

CONCLUSIONS

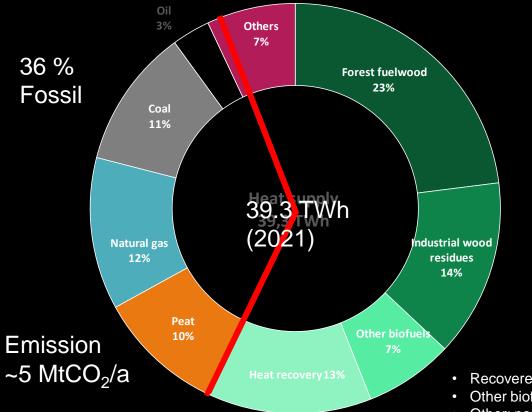
Many feasible reactor technologies are there
Reasonable commercial promises are there

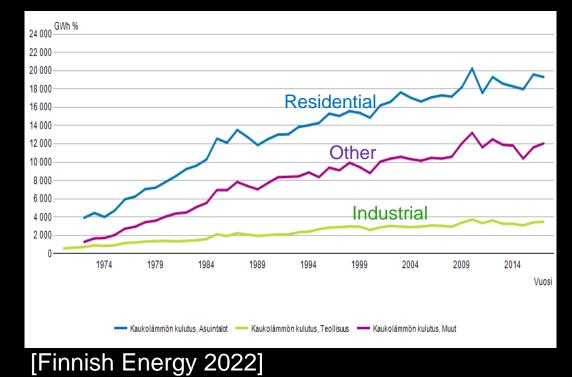
>> No questions of principle, but many questions in practice

>> New nuclear plant and site licensing is feasible in Finland, today

Regulation of technical detail will be a challenge, but also an opportunity to revamp oversight practices for effectiveness and efficiency

1


Thank you!


juhani.hyvarinen@lut.fi

LUT University

NUCLEAR DISTRICT HEATING = GHG REDUCTION

- · Recovered (recycled) heat: energy that would otherwise go to waste
- Other biofuels: includes also the bio share of municipal waste
- Other: non-bio share of municipal waste, plastic or hazardous waste, electricity.