ELSTOR

A big impact on the climate

THE WORLD'S ENERGY SYSTEM IS CHANGING FAST

01

Oil, gas, and other fuel prices are increasing

02 Price for CO2 emission allowances is increasing

03 Volatility of electricity price is increasing

Increased generation of renewable energy Wind & solar electricity generation volume is increasing and cost decreasing

Rising cost of Non-renewable energy

Renewable energy's Generation is not a challenge anymore, but the **Storing** is

- Storing electricity with electrochemical batteries and releasing it back is not economically most feasible
- Prices of lithium and lithium batteries, as well as their lifetime and sustainability are a challenge

Steam is used widely

- Food industry
- Beverage industry
- Pharmaceutical industry
- Chemical industry
- Sawmills
- Cement mills
- Laundries
- And other

THE PROBLEM WITH INDUSTRIAL HEAT GENERATION

A large portion steam

01

Required temperatures are moderately high and can't be achieved with existing heat pumps

02

Volatile power needs of processes can't be always met with solid fuel boilers (e.g., biomass)

03

In many cases conventional fossil fuels have been only techno economical option

A large portion of industrial heat is generated as

WHAT WE DO?

Power-to-heat Thermal Energy Storages

PtH TES

For industrial heat and steam production

Founders:

Ari Piispanen

Jero Ahola

• Professor of Energy Efficiency (LUT University)

ABOUT ELSTOR

- Founded in **2017**
- Located in Lappeenranta

- Serial entrepreneur (Visedo, Axco
 - Motors etc.)

MAIN FEATURES

Multiple times **lower investment** to build than electrical battery storage systems in relation to storage capacity

Charging and discharging can be done **simultaneously**

((17))

Perfect fit to **demand response**

High energy density to store energy in compact space

Remote control, remote operation capability, and **autonomic operation**

High storage temperature (over 500 °C) and very **high efficiency of 95-97%**

ADDITIONAL FEATURES

Modular and serial manufactured design

Material selection done **sustainably** considering price, reusability and availability around the world

Lifetime of TES is basically **unlimited** – no chemical degradation inside

Hundreds of tons of CO_2 emission reduction with each unit

In steam application area in Finland only, potential for **over 1000 units** (would mean 1% of total CO₂ emissions)

Discharge power control area **0 – 100 %** and capable of reacting to variable power demands

Serial production Base Unit

Optimized for small and medium sized industry

Electricity

CHARGING

0.5 – 3.0 MW

 \rightarrow

<mark>Unit</mark> ed industry

DISCHARGING

max 2.0 MW 250 °C degree max 16 bar

INCREASING VOLATILITY IN ELECTRICITY PRICES

Average Elspot Day-ahead prices in Finland

= Hourly volatility inside a day is on a steep rise

If these low price hours could be stored the price of electricity would be very low, even in 2022

count

•

●

HOURLY PRICES

2022 is exceptionally expensive year

However approximately 1600 most inexpensive hours are lower in cost than in 2018 or 2019

PROVEN SOLUTION

ELSTOR

A big impact on the climate

